Temporal Exponential Random Graph Models (TERGMs) for dynamic network modeling in statnet
ثبت نشده
چکیده
1. Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. A quick review of static ERGMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. An Introduction to STERGMs (non-technical) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4. An Introduction to STERGMs (more formal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5. Notes on model specification and syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6. Example 1: Multiple network cross-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 7. Example 2: One network cross section and durational information . . . . . . . . . . . . . . . . . 11 8. networkDynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 9. Visualizing dynamic networks using ndtv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 10. Independence within and across time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 11. Example 3: Approximation with long durations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 12. Example 4: Simulation driven by egocentric data . . . . . . . . . . . . . . . . . . . . . . . . . . 22 13. Additional functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Last updated: June 19, 2015 [//]: (Last updated 06-19-2015) This tutorial is a joint product of the Statnet Development Team: Mark S. Handcock (University of California, Los Angeles) Carter T. Butts (University of California, Irvine) David R. Hunter (Penn State University) Steven M. Goodreau (University of Washington) Skye Bender de-Moll (Oakland) Pavel N. Krivitsky (University of Wollongong) Martina Morris (University of Washington) For general questions and comments, please refer to statnet users group and mailing list http://statnet.csde.washington.edu/statnet_users_group.shtml
منابع مشابه
Estimating Temporal Exponential Random Graph Models by Bootstrapped Pseudolikelihood
This package vignette is designed as a hands-on tutorial for estimating temporal exponential random graph models (TERGMs) (Desmarais and Cranmer 2010, 2012b; Hanneke et al. 2010) and assessing goodness of fit and predictive performance (Cranmer and Desmarais 2011; Leifeld and Cranmer 2014) using the xergm package (Leifeld et al. 2014) for the statistical computing environment R (R Core Team 201...
متن کاملstatnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data.
statnet is a suite of software packages for statistical network analysis. The packages implement recent advances in network modeling based on exponential-family random graph models (ERGM). The components of the package provide a comprehensive framework for ERGM-based network modeling, including tools for model estimation, model evaluation, model-based network simulation, and network visualizati...
متن کاملA statnet Tutorial.
The statnet suite of R packages contains a wide range of functionality for the statistical analysis of social networks, including the implementation of exponential-family random graph (ERG) models. In this paper we illustrate some of the functionality of statnet through a tutorial analysis of a friendship network of 1,461 adolescents.
متن کاملergm.userterms: A Template Package for Extending statnet.
Exponential-family random graph models (ERGMs) represent a powerful and flexible class of models for the statistical analysis of networks. statnet is a suite of software packages that implement these models. This paper details how the capabilities for ERGM modeling can be expanded and customized by programming additional network statistics that may be included in ERGMs. We describe a template R...
متن کاملCurved exponential family models for social networks
Curved exponential family models are a useful generalization of exponential random graph models (ERGMs). In particular, models involving the alternating k-star, alternating k-triangle, and alternating k-twopath statistics of Snijders et al (2006) may be viewed as curved exponential family models. This article unifies recent material in the literature regarding curved exponential family models f...
متن کامل